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A method that is a modification of the method of half-space moments and 
uses the properties of collision integrals is proposed for the investigation of 
isothermal flow of a binary gas mixture between parallel planes. A formula 
is obtained for the slip velocity of a binary gas mixture between planes in the 
field of tangential pressure gradient with arbitrary accomodation of the tan - 

gential momentum. It is shown that the mixture isothermal slip is determi - 
ned by viscous momentum transfer at the expense of the mean mass and dif- 
fusion velocities, and that the diffusion velocities tend to reduce the slip 

velocity by not more than 2w0. It is noted that allowance for barodiffusion 

produces an additional term in the expression for the slip velocity of a bina- 
ry mixture, whose order of magnitude is the same as that of diffusion slip 

velocity. 

A considerable number of investigations (see, e. g., [ 1 - 71 was devoted to the iso- 
thermal slip of one-component gas in a field normal to the surface of mean velocity 

gradient. In more complex systems, such as binary gas mixtures, owing to the presence 
of relative motion due to the effect of partial concentration gradient, there exists one 

more form of isothermal slip of gas, viz. the diffusion slip of a binary mixture in the 

concentration gradient field normal to the surface [ 8 ,9]. The investigation of gas slip 
in a binary mixture presents additional computation difficulties in comparison with a 
one-component gas. These difficulties made it impossible to extend the calculation of 
isothermal slip velocity, applicable to a Maxwell gas or one that interacts according to 

the law of solid sphere and based on the method of half-space expansions [ 2 - 5 1, to the 
case of binary mixture. Paper [ 10 1, where an attempt is made to investigate gas mix- 

ture &lip for arbitrary molecule interaction, should be noted. 

1. Let us consider the problem of Poiseuille flow of a binary gas mixture between 
two surfaces separated by a 2L distance. We set the system of coordinates between 
these with the X- and Y- axes, respectively, normal and parallel to the two sur - 
faces. The distribution function for particles of the a kind is conveniently represented 
in the form 

F, (r, v) = + (1 i- sign v,) fl+ (r, v) + + (1 - sign us) fl (r, v) (1. 1) 

where fa and f_X are distribution functions of impinging and reflected molecules, res - 
pectively, sign v, = 1 in the half-space u, > 0 and sign D, = -1 in the half-space 
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V, < 0, while function F, is determined by the Boltzmann equation. We represent the 
distribution functions of impinging and reflected molecules in the form of finite series in 

Hecmite-Tchebycheff polynomials [ 111 

(1.2) 

At distances from the surface greater than the mean free path, RX, Qt~g, CT+RX~J, 
T a1 and ~5~ denote, respectively, partial concentration, mean velocity 9 viscous 
stress tensor, temperature, and heat flux of particles of the a kind. It will be shown 
in the course of derivation of transport equations that the remaining expansion terms 

(e.g.. ~J,.u~, q,,etc.) are quantities of a higher order of smallness with respect to pa- 
rameter M = u~*‘z~-~/z . 

One of the fundamental methods of investigation of gas motion dynamics is the me- 
thod of moments. It involves the expansion of solution of the kinetic equation in series 

of orthogonal polynomials in the velocity space together with the Maxwell distribution 
function. The method was used in [ 121 for inv~tigating gas slip along the surface. 
However the distribution function of the Knudsen layer has discontinuities of the first 

and higher derivatives in the velocity space, hence a better approximation of the dis- 
tribution function is obtained by using the method of half-space moments in which the 
distribution function of impinging and reflected molecules are expanded in the half - 

space in orthogonal polynomial . 

The derivation of transport equations by the method of moments stipulates multi - 
plication of the Boltzmann equation by the velocity function $,, (u) followed by inte- 
gration over the whole velocity space. Moreover, if one takes into account that the 
distribution function is represented by a finite series in orthogonal polynomials, this 
method reduces to the expansion of each terms of the Boltzmann equation in series in 
orthogonal polynomials with subsequent grouping terms at identical polynomials and, 

then, equating the obtained group to zero. At distances greater than the mean free path 
from the surface, the volume distribution function is best approximated by expanding 
each term of the kinetic equation in series in orthogonal ~l~ornia~ thr~ghout the 
space. The system of transport equations in the method of half-space moments is ob - 

tained in the same manner, 

2. Let us pass to the integral of elastic collisions which we shall represent as the 
sum of two pacts ; X;a G (F,, FP) which is the part that determines the arrival of mole- 

cules in an element of the phase space, and ZpD (Fp) F, which defines the departure 

of molecules from that element of the phase space. The quantities G (F, (va’), Fp 
(VP )) and D (FB (VP)), h w ere FB is the distribution function of the Knudsen layer, 
are functions of v, which have continuous derivatives of any order. 

Functions G(~~(v~‘)~~(~~‘)) and D( Fg ( vp’)) are, actually, integral operators in 
which integration is carried out with respect to UQ and dissipation angles 6 and V. The 
dependence of molecule velocities after collisions on velocities prior to collision and 
on angles 6 and cp is determined by the laws of conservation and may be conventio- 

nally represented in the form vcr’ (v,, va, 6, rp) and va (v,, vB, 6, tp). Integrands in We- 
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raters C and n and all their derivatives are continuous throughout the space of velo- 
cities vp , except the hypersurface (the manifold of points is of smaller dimension than 
the space of variables vp, 6, and cp ), where the Knudsen distribution function has dis - 
continuous derivatives. For operator G these hypersurfaces are determined by the relation- 

ships uy2Yva, vp, 6, cp) = 0, y = a, @, and for D by the relation “9x =O. Hence in con - 
formity with the theory of integrals that depend on parameters [ 13 ] operators G and D 

and their derivatives of any order with respect to v, are continuous. 

The elementary term appearing in the integral operator G is proportional to the 
elementary volume Aup in the vicinity of point vp Because of this the input of terms 
with integrands discontinuous with respect to v, to the integral sum of the operator is 
small, since the hypersurface volume where derivatives of the integrand are disconti- 

nuous is infinitely small relative to the whole phase space. From the physical point of 
view the continuity of the first and higher derivatives with respect to v, on operator G 
is ) thus, fairly evident. 

Thus in conditions of the Knudsen layer all terms of the kinetic equation, except 
part G of the collision integral which determines the arrival of molecules in an element 

of the phase space, have discontinuous derivatives, and are, therefore, best approxi - 
mated by the method of the half-space moment method, However, since part G deri- 
vatives are continuous, it can be approximated by conventional moments. 

We use the latter for deriving the system of moment equations for the distribution 
function (1.2) represented in the form of expansion in Hermite-Tchebycheff polyno - 

mials orthogonal throughout the space. 
One of the fundamental assumptions of the method of moments is the possibility of 

approximating the distribution function and each term of the kinetic equation by a fini- 

te series in orthoganal Polynomials. The singularity of expansion (1.2) is that, unlike 

expansions by the method of conventional and half-space moments, it has in each ofthe 
velocity half-spaces it own expansion, as in the method of half-space moments, but 
these expansions are represented by series in ~lynomials that are orthogonal t~oughout 
the space, as in the method of conventional moments. 

When deriving transport equations for the coefficients of (1.2) it is necessary to 
expand each terms of the kinetic equation in the half-spaces vGX > 0 and vax < 0 
in series in Hermite-Tchebycheff polynomials orthogonal throughout the space. For this 
the expansion (l-2) determined in one of the half-spaces is formally considered in the 

whole space, To obtain the coefficients of expansion (I.. 2) it is , then, sufficient to 
multiply the left-hand side of (1.2) by the corresponding Hermite-Tchebycheff poly- 

nomial and integrate it over the whole space. 
Let us consider the terms of the kinetic equation (except G ) whose derivatives are 

discontinuous at point vax I- 0 in one of the half-spaces. These terms have as the co- 

factor the distribution function (1.2) determined in that half-space, As previously, we 
consider the distribution function in the whole space. Then the final expansion of each 
term of the kinetic equation (except G ) which, according to the assumptions of the me- 
thod of half-space moments, exists in one of the half-spaces. is formally determined in 
the whole space of velocities va. The last statement follows from the linear indepen - 
dence of Hermite-Tchebycheff polynomials in each of the half-spaces. Thus in each of 
the half-spaces the coefficients of expansions of terms of the kinetic equation in series 
in berate-Tchebycheff polynomials are obtained by substituting for the complete 
distribution function F, with discontinuous derivatives at vas .= 0, the dis- 
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tribution function f*a for the appropriate half-space formally considered in the whole 
space. We then multiply the related term of the kinetic equation by polynomial $a (vm) 

and integrate it over the whole space. 
As previously indicated, the collision integral G (F,, FP) which defines the arri- 

val of molecules in a phase space element, has continuous derivatives at point u,, - 0. 
To determine the coefficients of the expansion it is sufficient to multiply G by the 
Hermite-Tchebycheff polynomial and integrate over the whole space, and, then, when 
deriving transport equations consider the expansion separately in each of the half-spaces. 

Applying the procedure of transport equation derivation described above, we obtain 

for the particular case of the distribution function (1.2) the following system of tram - 

port equations : 
%yr3T - V,n,T -I- VP&, = r @a - 4 + aP (2.1) 

VXG = ~_ 1 Gy, T, = Tp = T 
a 

where uaP [cp] represents a functional defined by formula 

WaP 1%) (k WV w')l = (naT;.Tb).3 ss dtdwdRa,p (w; 6) x 

wsignv,,exp --$---$- 
( 1 ( 

cp -$+7$) 

V ax = t, - MPwr, v,,’ = &a&p I v2, v2 = &a + vi-p 
vTa2 = 2T / ma, M, = m, I (m, + mp) 

where oap (w, es> is the differential cross section of diffusion, and &! is an element 
of the solid angle. Formulas for a,&- ,andp,-are given in [ 91. 

The integral of elastic collisions retains the quantity, momentum, and energy of 
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molecules. Hence the expansion of the collision integral in Hermite-Tchebycheff poly- 
nomials by the conventional method of moments has zero coefficients at polynomials of 
the zero, the three first and second order. The condition of conservation of the quantity 

of molecules, of over-all momentum and energy generally requires that, in the case of 

expansion of collision integrals by the method of half-space moments, the infinite series 
in coefficients at polynomials vanish. The condition of conservation by the collision in- 

tegral of the Y -component of momentum for the finite expansion (1.2) is defined by 
formula 

(2.2) 

where gs, gaX, and py- depend on the law of interaction between molecules consequent- 
ly (2.2) is satisfied with varying accuracy for different laws. 

A similar situation occurs, for instance, when the Chapman-Enskog method is used 

for solving the first approximation equation. In that case the distribution function is re - 
presented by a finite series and the expansion of the collision integral is limited to a 
finite series in polynomials. However the latter yields only a finite accuracy. Thus, for 
Maxwell molecules and finite expansion of the distribution function the collision inte- 
gral is of the form of finite series in polynomials. In the case of an arbitrary law of col- 

lisions the expansion is also limited to a finite series. The first neglected term is then 

small: for small solid balls it is equal l/20. 

For Maxwellian molecules formula (2.2) is identically satisfied. In the case of ar- 
bitrary interactions it is necessary to take into consideration an infinite series if the con- 

dition of conservation of the 9 -component of the over-all momentum is to be satisfied. 
If, however, the expansion of (2.2) is limited to a finite series, the first neglected term 
is small. As noted above, for small solid balls that term is equal l/20. Hence in order 
to avoid exceeding the exactness of solution of the Boltzmann equation by the Chapman- 

Enskog method it is advisable to limit the expansion of (1.2) to a finite series. 
The laws of conservation of the number of particles, and of the J - and 2 - compo - 

nents of momentum and energy for the finite expansion of the collision integral are auto- 
matically satisfied, owing to the antisymmetry of the first and second order polynomials 
in (1.2) with respect to u,, . 

3. Let us now turn to the slip velocity of a binary mixture of gas along a solid sur - 
face in the case of a Poiseuille flow. For the law of partial reflection of molecules 
from the surface we obtain from (2.1) for the slip velocity of a binary mixture the fol- 

lowing formula 

w-1 - - c wpl, w,l = w& 
P 

r, 61= (1 +exp{+)) x 
a 

( I -exp{-$4)-l 
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a = - [w&p - wilpa] p-l, A = Dw (w,Lwii - w$w$) 
-1 W aa = aada - adpI, W$ = aapdaa - aad+ 

&cm P&P nD,p 
a aa=-, 

Ad% 
aup = - , 

Adh 
D = n,npTh 

Ad = dir&w - &&pz, c,, = - (g,z, + ga) a,+, cap = - gap&+ 

da, = 6;: K 1+ n$ a,, > - fida- (ha, - ha) dap = - h,&- 
5-c 

PL, vTCl ma0 = - - 
A- n,T ‘* 

a 

where ea is the partial accommodation coefficient, [a,], is the coefficient of barodif- 
fusion, and A, I1 , Dap, pE, and p are given in [ 91. 

In the case of a single gas with L > h the coefficients [a,]! s 0, k = 1, and 

(3.1) then becomes the formula for the slip of gas along a surface [14]. The depen - 
dence of the coefficient of a single gas isothermal slip on the accommodation coeffi - 
cient is then the same as the coefficient determined in [15]. For a binary gas mixture 
the coefficient k in formula (3. I) is not unity, owing to the presence in it of a second 

term. That term takes into account the transport of viscous momentum by the diffusion 
velocity across the Knudsen layer, and vanishes for a single gas. At considerable dis - 
tances from the surface coefficient k in the case of a Maxwellian binary mixture is 
represented by the formula 

Substituting this expression for k into (3.1) , we find that the input to slip velocity due 
to the transport of viscous momentum across the Knudsen layer by diffusion velocities 
is defined by a quadratic form relative to x1, zX (eL - ~3). Thus the slip coefficient 

is reduced by 20’70, owing to diffusion transfer when m, > m?, ox > osr e, =-Eb =--= 2, 

and y 1 = ys = 'j,. 

Appearance of the first term in formula (3.1) for slip is due to the presence of 

barodiffusion in the system. Its magnitude is of the same order as the diffusion slip which 
occurs in systems with concentration gradients [S ,9]. The effect of the first term in for- 
mula (3.1) is smaller than that of the second term in proportion to Kn = h / L . 

Note that at considerable distances from the surface outside the Knudsen layer ua 

and oarV tend to zero and the system of transport equations (2.1) becomes the system 

of Navier-Stokes equations for a mixture of gases, and the Knudsen distribution func - 

tion becomes the Chapman- Enskog function. 

The author thanks V. V. Struminskii for his interest in this work. 
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